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SUMMARY

The inverse method, with the shock wave prescribed to be an
elliptic cone at a finite angle of incidence, is applied to calculate
numerically the supersonic perfect-gas flow past conical bodies not hav-
ing axial symmetry. Two formulations of the problem are employed, one
using a pair of stream functions and the other involving entropy and
components of velocity. A number of solutions are presented, illustrat-
ing the numerical methods employed, and showing the effects of moderate
variation of the initial parameters.

INTRODUCTION

The first three-dimensional high-speed flow problem to be solved
exactly was the flow past a circular cone. Pioneers in this work were
Busemann, and Taylor and Macoll. (See refs. 1 to 3.) Reference b
gives numerical solutions for circular cones using the theory developed
in reference 2. A perturbation technique was devised by Stone, refer-
ence 5, for circular cones at small angles of yaw. The method of Stone
was applied in reference 6 to obtain approximate solutions for cones at
small angles of yaw, and was extended in reference 7 for large angles
of yaw. A somewhet similar numerical analysis, the linear characteristics
method, was developed by Ferri for analyzing the flow past yawed circular
cones (ref. 8) and slightly noncircular cones (refs. 9 and 10). Tables,
based on the method of Ferri, are available (ref- 11) for calculating
such flows. Of the various analyses referred to above, the only exact
numerical solutions, based on the full inviscid equations of motion,
are the ones tabulated in reference 4. They were obtained by numerical
integration of the equations of motion specialized for symmetrical
conical flow.

There are various ways that an exact (numerical) attack on a high-
speed flow problem, employing the full inviscid equations of motion,
might be organized. One is to specify conditions at the body and then
to integrate the equations of motion outwardly toward the shock wave.



This is the manner in which the problem was pos:d for the integrations
tabulated in reference %. Another way 1is to prescribe conditions at

the shock wave and then to integrate inwardly toward the body. This has
been called the "inverse” or "marching inward" method. The capabilities
of this method are exemplified in the work of Vin Dyke and Gordon,
reference 12, who presented a catalog of solutions of flows past blunt
bodies for a large family of preassigned shock shapes. In the work of
Radhakrishnan, reference 13, the marching inwari technique was used to
find the conical body behind a circular conical shock wave at a large
angle of yaw. In reference 14, Briggs employed an analogous approach
to compute bodies that support elliptic conical shocks.

The work of reference 14 is extended here %o include circular or
elliptic conical shock waves at finite angles of attack or yaw. Two
implementations of the inverse method are employed, and each has been
programmed for an electronic computer. The first formulation, which
was used in reference lu, is in terms of pressure, density, and a pair
of stream functions, one of which vanishes at the body. (A discussion
of the use of several stream functions in the analysis of three-
dimensional flows will be found in reference 15.) The second formulation
of the problem is in terms of velocity components , pressure, density,
and entropy. The body is located by calculating the position of the
entropy layer, shown by Ferri (ref. 8) to exist on the surface of the
body in the case of nonsymmetrical conical flow. The computations of
reference 13 were based on this latter approach. (An interesting
discussion relative to the thickness of the aforementioned entropy layer
is given by Cheng, ref. 16.)

The flow field behind an elliptic conical :fhock wave is analyzed
in detail in the present report, both the strear-function and velocity-~
entropy formulations of the problem being used. The resulting body and
surface pressure is given, along with plots of 1he variation of the
velocity components and entropy in the flow field. A diagram showing
the stream lines in the crossflow is also preserted. Comparisons are
shown between results of wind-tunnel tests on elliptic cones and numerical
calculations with initial data based on schlieren pictures of the shock
waves 1n these tests. A comparison with the aprroximate theory of
reference 6 is made using a machine result calellated with a circular
conical shock wave at a finite angle of yaw. Finally, the resulis of a
number of cases are presented wherein systematic variations of shock
geometry, free-stream Mach number, and ratio of specific heats were made.
These are given in the form of body shape and surface pressure.

SYMBOLS

ay,by semimajor and semiminor axes of elliptic cross section of
coordinate surface of constant 6 = 6, (egs. (4))
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ag )b2

AB,C,D
7,8

F,G
h,,ho,hg

k2 ’k, 2

X,y ,%

M(x,y,z)

JACINAY)

semimajor and semiminor axes of elliptic cross section of
coordinate surface of constant © = @y (egs. (&))

functions defined by equations (8)
stream functions of a three-dimensional flow

specializations of f and g for the present conical flow
problem

coefficients of the metric of the sphero-conal coordinate
system

constants in the sphero-conal cocordinate transformation

Mach number

number of points taken in the numerical integration

function defined by equation (41)

pressure referred to p@UwZ

sphero-conal coordinates (see fig. 2)

entropy, £
p?

velocity components in the sphero-conal coordinates

velocity components in Cartesian coordinates

free-stream velocity

velocity vector

Cartesian coordinates

ratio of specific heats

coordinate surface that coincides with the shock wave

increments of 6 and ¢ that define the mesh size in the
numerical calculations

density referred to free-stream value



Subscripts

b conditions on the body surface
n nth extrapolation
N normal component (eq. (23))
O conditions at the shock wave
r,0,9 differentiation with respect to variables r,08,9
X,Y 52 differentiation with respect to variables x,y,z
00 free-stream conditions

Superscripts
(n) nth extrapolation
' differentiation with respect to the variable ¢

THE SPHERO-CONAL COORDINATE SYSTEM

The numerical procedure employed here requires that the shock
wave be a coordinate surface. A system of ortaogonal coordinates
r,8,9 which meets this requirement is given ia reference 17. The
transformetion from Cartesian coordinates is

\
X =T cos G'Jlék'acoszw
Yy =r sin 8 sin @
)@
z = r cos QN1l-k2cos29
K +K'“ =1, 0<6<n, 0<®<o2n
- = - - J

where x,y,z are the Cartesian coordinates. The element of length in
the sphero-conal coordinates system is defined by the relation

ds2 = h,2dr2 + hy2362 + h32dp? (2)



oW

1

where

. 2 .
k®sinZ9 + k! sin®p

2
1-kZ2cos38 (3)

=
N
N
il

> k%sin®9 + x'Zsin?0
1-k'2cos2p

h32=r

The coordinate surfaces are:

\
X2 4+ y2 4+ z2 = r2 for fixed r = rg
2 2
x2 - L 2 _ = for fixed 6 = 84
b2 a,®
2 2
X2.+y_§._22=o for fixed CP=CPO
as bs
o _ 1-k2cos3g ()
81" T TS5 5
k=cos<6q
b2 = tan2g, a; > by
5 _ l-k'Zcos20,
. _ ==X __CO5~%Yo
2 k*ZcosZ0e
2 _ 2 =
bx" = tan=Py &y = > by J

Portions of the conical surfaces that are represented by the second and
third of equations (4) are shown in figure 1. The shock wave of the
present problem will be taken as a constant 6 (=) surface.

The components wu, v, and w of velocity in the sphero-conal
coordinate system are in the directions of increasing r, 6, and 9,
respectively. Figure 2 shows curves of constant 6 and ® as projected
onto the y-z plane. The velocities v, and Wy are in the directions
of increasing y and z, respectively, and the velocity w1, not shown
in figure 2, is in the direction of increasing x.
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The relationship between Cartesian and sphero-conal components of
velocity is given by the equations:

C 12nna? W1 Cnne? w
u; = U cos edl-k‘zcosz@ - v sin 6 ﬁ_ kZcos9)(1-k! “cos®)

k2sin29 + k'Zsin29

k'?sin @ cos @ cos 8
Jx2sin26 + k' sinZ0

1-k%cos%9
2sin29 + k'Zsin?¢
- (5)
w sin 0 sin @J[ 1-k'"cos®Q _

k25in20 + k'Zsiap

v1=usinesin@+vcosesinq>\[

+

2.
Wy = u cos PN1-kZcos® + v ksin 6 cos 6 cos @
Nx2sinZg + k'Zsin®Q

) wq[(l-kzcosze)(l-k‘ECOSZQ)

k2sin25 + k'Zsin20

THE EQUATIONS OF MCTION

The equations of motion for flow of ar ideal compressible fluid

are, in vector form,

div(p?) =0 (continuity) (Ca)
o{V.grad)V + grad p = 0 (momentum) (6n)
V.grad(p/e?) = O (energy) (GCe)

The velocity V has been made dimensionle:s with respect to free-stream
velocity Uy, density o with respect to I'ree-stream density 0y, and

pressure with respect to the guantity pooUCJZ. When transformed into
the sphero-conal system, equations (6) become

A a’(g‘ef) + 3B a(gc";) + o(2u+ACv+BDw) = O (72)

»



Av % Bw < " (ve+w2) 0 (7o)
v v Ao .
Av 55-+ Bw ol ACw2 + uv + BDvw + —-SB =0 (‘fe)
ow ow B op
Av = + Bw 7 - BDV2 + uw + ACvw + — =0 7a
o0 & p P (72)

s 2o ig% -0 (7e)

Note that the assumption of conical flow has been made in the writing
of equations (7) and that the following abbreviations have been employed:

22 = 1-k2cos39 _ r2 h

k®sin®¢ + k'Zsin?p h, 2
B2 = 1-k'Zcos2p o ra

kZsin29 + k'2sin2Q hg2

> (8)

o = k®sin 6 cos @

k2:in20 + k'Zsin20
D = k'2sin @ cos P

k25in29 + k'Zsin2p )

Three-dimensional flows such as those under discussion can be
described by a method utilizing two functions which are a generalization
of the familiar stream function of two-dimensiocnal and axisymmetric
flows. This technique was used in reference 14, and a concise description
of’ the use of stream functions in the analysis of three-dimensional flow
problems can be found in reference 15.

If two functions, f and g, are chosen such that

oV = (grad £) X (grad g) (9)
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then equation (6a) is satisfied, and f and ¢ represent stream surfaces
whose intersections are streamlines. This can be demonstrated in the
following manner.
Equation (9) has the three Carteslan components
pu = fygz - fzgy
ov = fa8, - Tx8, (10a)
ow = fxgy - fygx

where subscripts x,y,z indicate partial differentiation. From
equations (10a) it follows that

wrviw = (fyg, - Tzey)i(fa8x - fx&8,):(fx8y - fygy ) (10b)
Equation (10b) is a solution of the two equa:sions

-
V-grad £ = 0
(11)

#

>
V.grad g 0

Equations (11) are valid if V, the velocity vector, is normel to grad T
and grad g. Grad f and grad g are the norrals to surfaces f and g,

and so V must lie in the surfaces f and g. It can be said, then,

that f and g surfaces contain the streamlines, and that the inter-
sections of these surfaces are the streamlines. Thus it is quite
reasonable to think of f and g as stream functions.

The energy equation, equetion (6c¢), now takes the form

§=s@@) (12)

which states that entropy is constant along streamlines. The momentum
equation, equation (6b), can be written in terms of ¥, o, and S; that is,

o(¥-graa /¥ + grad[o?s(f.g)] = 0 (13)
The velocity components u,v,w can be found in terms of the stream

functions f and g by expanding equation (0). The result, in the
sphero-conal coordinate system, is

o e
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R
u = 5 (T8 - fogg)
v= o (oer - Treg) ) (14)
w = g% (frgg - fosr) J

Here f and g are functions of r,5,9 and the subscripts indicate
partial differentiation. Equations (14) are general for three-
dimensional flows and are not limited to conical flows.

For conical flow V, p, and 8§ are not functions of r. Thus it
is clear from equations (14) that the product fg is homogeneous of
order 2 in r. 1In order that f will reduce to Stokes! stream function
in the axisymmetric case and that the body be described by £ = 0, it
is convenient to make the definitions

(r,0,9) = r2F(9,0)
(15)
g(r,0,9) = G(9,9)

Now 5 cannot be independent of r wunless it i1s also independent of
f. It can be concluded, then that

s(f,g) = s(a) (16)
for conical flow.

Equations (14) may now be formally written in terms of F and Gj
that is,

AB h
u = -6— (FQG(p - F(pGQ)
v = - 276y \ (17)
w = %FGQ
p

The components of grad[p’s(G)] are
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Ap7s >
o

Be?S P st
P L2
<? 5 + 5 G¢>

r

(18)

in the r,8,p directions. The equations of motion in terms of F and
G are:

6 momentum:
Pe
[7D7+ls - (2BFG¢)2] -

SY
= (2BF) 2(Gglpp-Cplop) - (o7 78) <?> Gg + 2BZFGy(Fyle-FoGep)
2 2 f@ 2(n2~ 2 2~ 2
+ (2F)=cg ( D-B = ) Gy + (2r) =(B Gp~ + A%Gg™) (19)
¢ momentum:
o] p
(2AF) %Gy Ggg = 2A%FGg(Fylg-Fglyp) + (2AFGg)Z [39@ - Gg <D + %) + G —09}
- (2F) G@(CGQ + B DG ) + p7+lS< Po 48 G@) (20)

r momentum:

= (aB)Z [FQG@GW - (FgGop+FpCa)Gog + Fyloles - Go®Fup + EGQG(PFQQJ

9
- 2F(A%Go™+B%0y7) - (FyGg-FoGe) [ <2A C-C+A% =) G,

P
- AR <2B2D—D+B2 —DCE> GQ] (21)

T oW >
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It has been stipulated that F 1s to vanish on the surface of the
body. It would appear, then (see egs. (17)), that the velocities v
and w must also be zero there. This is not generally the case, so
the derivatives Gy and Gg must become infinite on the body. The
singular nature of the derivatives of G at the body is evidence of
the previously mentioned singular behavior of the entropy near the body,
since S and G are functionally related (see eq. (16)).

THE INITTAL CONDITIONS

The shock wave is taken to be an elliptic cone of the family
described by the second of equations (4). The value of 6 at the shock
cone is designated 6y5. The equation of this conical surface is

2 2
D(x,y,z) =x2 - J_ ~ 22 =0 (22)
b,®  a,®

The component of the free-stream Mach number normal to the shock wave is
or ol' ol
y _MX&?)*My(% "\
RCRCEE
Ox, 3y, oz,
where I\/J.X,I\/I'y,l\/lZ are the x, y, and z compconents of the free-streanm

Mach number. When rewritten in terms of the sphero-conal coordinates,
equation (23) becomes

(23)

(l—kzcoszeo)(l-k‘zcoszw)

. 2 .,
k251n290 + k! 51n2¢

My _

—— = sin Oycos o cos B

1-kZcosZgq
k2s5in20o + k'2sin20

- sin 858in @ cos o sin B

k®sin 6,cos O
- ¢cos ® sin (2u)
szsin260 + k'2sin“p




12

The angles of attack and yaw, o and B, and thke x, y, and z components
of Mach number are shown in figure 3. Note that the axes are fixed in
the shock wave and that their origin is at the cone vertex.

Fxpressions are required for evaluating velocity components, density,
pressure, and the stream functions just behini the shock wave. The
obligue shock relations (see, e.g., ref. 18) along with equation (2k)
and equations (17) are utilized in the writirg of these expressions. In
the following paragraphs the equations that apply only at the shock will
be clearly indicated so as to distinguish them from such general relations
as may appear in the analysis.

The velocity components w and w lie in a plane tangent to the

shock, just ahead of the shock. They therefore undergo no change through
the shock, so that at 6 = 6,

cos B,c0s8 & cos B Vlfk'gcoszw

o
]

+ sin Bosin @ cos @ sin B + cos P sin a*dl-kzcoseeo (25)

k'Zsin ¢ ccs O

£
It

cos 6,c0s @ COS B
sz . 2 1212
k®sin“0, + k'“sin%op

. . . 1-k'ZcosZp
- sin 6,sin @ cos a sin B
kZsir®0, + k'2sin®p

(1-x2cos®6,) (1-k' ZcosZp)
- sin @ sin a (26)
kZsin®0, + k'Zsinp

The velocity v and the density and pressure are found from the shock
relations to be

C(r-1M® + 2
(7+1)MNM¢

(27)

(7+1) My®

) (7-DMy= + 2 (29)

U 0w



U 0w >

_ oy - (7-1)

(29)
(7 +1)M 2
where My 1is represented by equation (2k).
If equations (27), (28), and the first of equations (17) are
combined, the result is
My
pv = - o~ = -EBFG, (30)

If the second egquality is taken in equation (30), and if eguation (24) is
inserted for My/Meo an expression is obtained which can be solved for
G¢, valid, of course, only at 6 = §g; that is,

Gp = gf cos Bocos a cos BN 1-kZcos3g,

I ER=]
- cOos Bpsin ® cos a sin B E_E_%QEEQQ
1-k!'“cos=p

244 N
k<sin 8qcos 64

Jl—k'zcosz@ /

at 9 = 0g- The form of the functions F and G at the shock is still,
to some extent, arbitrary. If it is asked that G be equal to © on
the shock, then this can be accomplished by setting

! (51)

- cOs @ sin «

p == <%in 6ocos a cos BN Ll-kZcosq

2

1-k2cos 25,

l—k‘2c032@

eos Bpsin @ cos « sin B

kZsin 9gcos 65 )

[ 2
1-k' coszm ’/

- Ccos ¢ sin o
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The streamlines, upon which entropy is constan®, converge near the body
and come together at B. Thus all values of entropy exist at B, a
singular point. The point E 1is also singular by reasons of symmetry.
The entropy therefore undergoes rapid change i1 the vicinity of the body,
thue leading to the notion of an entropy layer. The streamline emanating
from the shock at C impinges upon the body as A, and follows the body
surface around to B. The velocity v 1is normal to the body at points
A and B, and so it is zero there. The body cal be completely determined,
then, by plotting the points on AC and BD whare v vanishes and by
noting the points where curves S versus ¢ (8 = const.) cross the line
s(v = 895, ® = 0) = const.

THE NUMERICAL ANALYSIE

The conical shock problem is solved here by two methods, one using
the stream-function formulation of the equations of motion and the other
using the velocity-component formulation. The two procedures are pro-
grammed for electronic computers, and for convenience they are termed the
"stream-function program” and the "velocity-entropy program,” Descriptions
of the computer programs are given in the following sections, along with
a brief discussion of their specific application and limitations.

The Stream~Function Program

This program has been set up for an Electro-Data 205 Electronic Data
Processing Machine. The program is in most ways identical to the one with
which the calculations were performed in reference 1k, with the extenstion
here to include angles of attack or yaw. Equetions (19) to (21), along
with equations (25) to (28), (33) to (36), anc (38) to (42), define the
problem.

For a given case, values are prescribed 1or

90‘ }»shock-wave geometry
bi/ay

My free-stream Mach number
¥ adiabatic exponent

o8 angle of attack

§] angle of yaw

U ow 3=
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JAY?] increment in &, a positive gquantity
n number of points

The increment 2A¢p is found from the tabulation below, which is
incorporated in the computer program.

& B &P Range of o

0 0  xw/en (09/2) <9 < (1/2) - (8o/2)

0O #0  w/n -(n/2) + (b0/2) <9 < (#/2) - (29/2)
#0 0  w/n (2p/2) <9 < n - (Lo/2)

In practice 15 or 20 points are used, but as few as 10 and as many as 60
have been used in some cases. The size of A9 1is chosen so that 8 or

10 increments are taken to get to the body. Cases have been run with as
few as 2 and up to 50 or 60 steps to the body. No particular difficulty
is encountered in using the very small increments. This is in contrast
with the calculations of reference 12, where an inherent instability limits
the number of steps to the body.

The calculations are arranged according to the outline below.

Step la.- Compute initial values of p, F, G, Fy, and Gy
at the shock wave using the input values of &, bl/al, ete.

Step 1l.- Compute the derivatives p,, Fb, G., Fb@’ Gem
EQ$, and Ggp numerically. Compute S and S'/s. Solve the
equations of motion for pg, Fgg, and Gyg. Calculate the

"externally iterated” value of p, designated p;i, using the
formula

() _ (n-1) g [pém CE 1)] (53)

Pig 7T Pit -y 9

(At the shock, pjy = p.) It is termed "externally iterated"
in that is is computed at each point using only the informa-
tion at hand, and it is not used in the subsequent extrapo-
lations. The pressure p 1s computed with the relation

p = pzts. Pressure, density, and other pertinent flow-field

data are now read out of the computer.

Step 2.- Extrapolate p, Fg, and Gg to the coordinate Op4,
using the formulas
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N
p(n + l) = p(n) - A@pén)
Fén +) . F(,_gn) - A@Fég) ) (4%)
n+ 1) _ (n) (n)
Gg = Gg - £8Ggg
J
Take these values of Fén +1) and Gén o along with the

previously calculated results F(n) and G(n) and extrapolate
Fand G with the equations

F(n +1) _ F(n) _be [Fén) N FéL + 1)1

2
(45)
G(n + 1) _ G(n) _ by G(n) + G(L + 1)1
2] 2 o i
Step 3.~ If any values of the stream function F have
become negative at 6 =6, 4, ; go to step 4. Otherwise
repeat steps 1, 2, and 3.
Step 4.~ Some values of F are negative at 6 = Oy + 1-
Recall the flow data for 6 = 6, and extrspolate to the body
with the following equations. The subscriyrt b indicates
results on the body.
2(0)
NG, =
ERRNEY )
e (hb)
Op = 6p - LBy
-
sin ¢ sin 9y,
I
2 2
cos 6b~j1,- k' cos ©
) (47)
_cosop [1- k2c0829b
Zp = 2 2
cos BN 1 - k' cos ¢
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(n) (n)

P, =P 7 - LOppy
(18)

pgn)

p(n)[7 Eéiz + <§%>(n)g(n)]

ROV

Note that yp and z, are actually ratios (y/x)b and. (z/x)b,
and are, as such, projections of the body coordinates r,
Ub, and ¢ onto a plane x = 1. These coordinates, along
with py, are now read out of the computer and the case is
finished.

The order of procedure discussed in the foregoing paragraphs can be
seen graphically in figure 5, which is a simplified flow chart of the
computing program.

Note in step 3 of the foregoing outline that the integration is
stopped as soon as the stream function F changes sign anywhere on the
coordinate ellipse 6y 4 ;. The body is then located by linear extrapo-
lation of the data at 0pn +to the place where F vanishes. In cases
where the ellipse ¢y 1s markedly different in shape from the body, the
extrapolated distance, Afy, may be excessively large, resulting in an
inaccurate representation of the body. This situation occurs for very
large values of o or B, or for small values of bl/al, or for small Mach
numbers. The computer program was not readily amenable to modification
to overcome this difficulty, which in general prevented close analysis of
the entropy layer on the body. A number of cases were calculated using
this program, and limits on parameter values were generally established
from comparison of results with calculations using the velocity-entropy
program. The latter program has been set up so as to overcome the
difficulty discussed above, and it is described in the following section.

The Velocity-Entropy Program

This program was set up for an IBM 704 electronic computer for the
purposes of studying the entropy layer on conical bodies, and as an
independent check on the stream~function program. The velocity formula-
tion of the equations of motion, equations (7), is used here. This
formulation is numerically less involved than the stream-function formu-
lation. Only first derivatives must be taken mmerically in the velocity
formulation, for example, whereas second derivatives are required in the
other. The velocity-entropy program is the more versatile of the two in
that the range of ¢ 1s arbitrary and need not be precisely n/2 or =
radians. It 1s the more difficult of the two to use, however, in that
the body is found by an snalysis of the entropy, which cannct easily be
programmed for the computer. It is not intended as a production program
and only a few cases have been analyzed in detail with its use.



The initial shock-wave data are found fron equations (25) to (29)
with prescribed values of 64, bl/al, Mg, 7, @, B, &8, and n. The number
of points n may be in the range 7 < n < 50. (The lower 1limit 7 is
dictated by the numerical differentiation scheme that is employed here.)
The range of ¢ 1is also specified along with 64, bi/21, etc., by pre-
scribing values of Lji and Lp. These two gquantities are angles and are
put into the relation &p = (15 - Ll)/n. The -ralues of ¢ are then
taken at intervals A¢ in the range (Li + &9/2) <o < (Le - £9/2). For
o =p3=0 1t is usual to take ILi = O and Lo := 900, but different values
may be used if desired. An outline of the com>uting procedure is presented
next.

Step la.- Compute initial values of wu, v, w, p, and p at
the shock wave using the given values of 0., bl/al, etc. Compute

s = p/e’.

Step 1l.- Calculate numerically the derivatives u%, Vs Yo, P
Calculate wug, vg, Wg, pg, and Sg from the equations of
motion. Compute p;y using equation ?h3). Compute pressure p
using the formula p = pit7S. Read current ralues, at 0 = 6.,

of u, v, w, p, p, and S out of the comput:r.

Step 2.- Extrapolate velocities, p, and S to the next 6
coordinate using the formulas

7

u(n +2) = u(n) Aeuén>

S+ o () Aevén:

It

W(n + 1)
¢]

() agyln ? (49)
olm +2) = o) pgp(e)

gla+ 1) _ g nosg™

y

Step 3.- If any values of the velocity v have become posi-
tive at 9 = Opy1 g0 to step k. Otherwise repeat steps 1, 2,
and 3.

Step 4.~ Some values of v(n+l) have beczome positive. Recall
the flow-field results for the station 6 = 9n and continue the
integration using one of the two options A and B. The option
choice 1s specified along with the initial data 64, bl/al, etc.

U oW >
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Option A.- Calculate a new value for 28. The new A8
is some fraction, say 1/5, of the original value. The integra-
tion is continued now (steps 1 and 2), and instead of using all
n data points at once, several smaller segments are used. The
segments may overlap, and the integration proceeds on each
segment until all values of S are greater than the value cal-
culated to exist on the body, or until a pre-set number of
steps have been taken, or until the calculation breaks down as
evidenced by negative S or p values. The size of the small
segments, the number of points between the first points of
succeeding segments, and the size of the new A8 are all
specified with the initial parameters.

Option B.~ This process starts at © = 6n 1in the flow
field and uses a reduced value of A9, as in option A. It
depends on the entropy variations being of the form shown in
figure 6, a situation that prevails for elliptic cone shocks
at @ =5 =0 1in the region 0 <o < 90°, or circular cone
shocks at finite angles B in the range -90° < ¢ < 90°.

Observe in figure 6 that the derivative Sp 1s negative over
most of the flow field, but that zero values begin to appear

as the integration proceeds. The points of zero slope are
labeled S; and So. If the data to the right of point S, on
the 6n + = curve are used in extrapolating to the coordinate
fn + =z, numerical difficulties arise due to extreme values of

Sp 1in this region, and due also to the fact that the velocity
v passes through zero near £ = 0. Divisions by very small
values of Vv can introduce large errors in the subseguent
calculation of 8, p, etc., from the equations of motion. These
same difficulties appear in data to the left of points S;. The
technique in option B is to continue the integration from 6p,
but to retain, at the extrapolation step, only the data lying in
the region between points S; and Sz on the entropy curve. The
integration is continued in this manner until erroneous negative
values of p or S occur within the range o(S1) to o(8z), or
until all values of S are greater than the body value.

The body is found with either option by converting the ¢ - 0
coordinates of places where the entropy curves cross the line of
constant entropy that represents the body entropy to yp and zp,
using equations (47).

No flow chart is presented for the velocity-entropy program. It is
identical in concept to the one shown in figure 4 for the stream-function

program.

As has been indicated, the numerical data near the body are subject
to the ravages of division by zero and abrupt changes in slope of gquanti-
ties whose derivatives must be obtained numerically. These problems occur
to the largest extent in the region nearest the entropy singularity, and
have a physical basis in the fact that the entropy does indeed change very
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rapidly in a thin region near the body, and nost rapidly near and at the
singular point. There does not seem to be any general numerical procedurc
sultable for machine programming by which ths calculations can be performed
with assurance in this region. Results can usually be obtained over the
first portion of a body, but only with diffizulty over the region ending

at the singularity, even with the devices of options A and B. In a given
case 1t is usually necessary to recompute several times, using both options
A and B, and with various lengths of segment size in option A in order to
get a reasonably complete picture of the entropy variation in the region
near the entropy singularity.

PRESENTATION OF RESULTS

Prcliminary Calculations and Comparisons

Preliminary calculations for elliptic coinical shock waves at zero
angles of incidence are given in reference 1+. The main purpose of these
calculations was to study the stability and :onvergence of the numerical
process, and the effect on the results of variations of ¥ and M,. It
was found that the calculations are stable aid convergent for small incre-
ments Ag. The bodies that support elliptic conical shocks are themselves
somewhat flatter than elliptic cones. The chiange in body shape and surfacc
pressure with changing Mach number is as migit have been anticipated. The
limiting case of ¥ = 1, My ~ » corresponds to the so-called Newbonian
plus centrifugal theory. A machine result calculated with ¥ = 1.001 and
Mo = 10,000 is compared with the simple Newtoinian theory, which states that
the surface pressure is proportional to the square of the sine of the local
body angle. Laval, reference 19, has calculited pressures on conical
bodies in the limit 7 = 1, Mw = ». He pres:nts a result for the case of
0o = 30°, by/a; = 0.6, and @ = 5 = 0, the sane case used for the comparison
in reference 1. These results are brought sogether in figure 7.

Initial comparisons of calculations using the two computer programs
described in the present report were made wish the case of @45 = 30°,
bifa; = 0.6, Moy =6, v = 1.h, and « = £ = O. The computed body shapec
and surface pressure are shown in figure 8. Observe that the results of
the two computer programs differ by a small amount. Another comparison
of the two computer methods is shown in figure 9 for the case of a cir-
cular shock wave, 65 = 30°, at an angle of yuw of 200, and with 7 = 1.4
and Mo = 10. This is the case reported in rcference 13. Again, there is
a slight discrepancy between the results of “he two machine procedures.
The velocity-entropy calculation agrees closcly with the result of refer-
ence 13, except on the leeward side, which i remarkable when it is
realized that Radhakrishnan's work was carried out on a desk computer.

The differences in the machine calculated results can probably be ascribed
in part to differences in programming procedures, and to the numerical
difficulty associated with the body extrapolation process of the stream-
function program. The differences are not great, however, but the velocity-
entropy program is presumed to give the more precise results.

A B o N P T oY
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The variations of entropy and velocity components with the coordinate
¢ for the case shown in figure 8 are presented in figures 10 to 13. The
streamline pattern in the crossflow is shown in figure 1k4.

Stocker has calculated conical bedies by a two-stream-function
technique wherein the stream functions are independent rather than depend-
ent variables. UDNo report has been published by Stocker, as yet, but the
results of one of his calculations, as given in reference 20, are shown
for comparison in figure 8. His results agree well with calculations using
the velocity-entropy program.

Mauger, reference 21, has applied complex variable theory and the
method of Garabedian (ref. 22) to compute bodies that support conical
shock waves. He presents a calculation for an elliptic conical shock
wave, and the results of the same case as computed by the method of
Stocker. These are shown in figure 15, along with a calculation by the
velocity-entropy program. The agreement is very good. Note that pressure
has been plotted against the angle V¥ where ¥ = arc tan(yb/zb).

An interesting facet of the present work is the inclusion of
calculation of a so-called "externally iterated" density. (See eq. (43)
and also ref. 12.) Pressures were computed at the place ¢ = O on the
body for the case shown in figure 8 using both iterated and uniterated
densities. The results differed by about 1.5 percent at that point.

Comparisons With Experimental Data

Various wind-tunnel experiments have been performed on elliptic
conical bodies (see, e.g., refs. 23 and 24). The shock supported by an
elliptic conical body is not an elliptic cone, and conversely an elliptic
conical shock wave will be supported by a body that is not elliptic in
cross section. Thus no precise comparison can be made between results of
tests on elliptic cones and the calculations that assume an elliptic
conical shock wave. ©GSome calculations were performed, however, assuming
that the shock waves of references 23 and 24 are elliptic cones. The
resulting bodies and pressures are shown with the experimental data in
Tigures 16 and 17. Note that pressures are plotted against the angle
where V = arc tan(yb/zb). Two attempts were made in calculating the
conical body to compare with the actual cone tested in the M, = 6
experiments of reference 24, and both results are shown in figure 17.

Comparison With an Approximate Theory

A case was calculated for a circular conical shock wave with
6o = 30°, M, =10, y = 1.4, o = 0, and $ = 10°, using the stream-function
program. The resulting body was almost circular in cross section, and it



was used as the basis of a computation using the first-order yawed-cone
theory given in reference 6. Relevant param>ters are, in the notation of
reference 6, My = 10, 8g = 26.5°, € = 0.1575, and & = 3 = 0.1745. The
surface pressure, calculated with respect to body axes, is

p, = 0.217[1 + 0.58% cos(§ + 90°)] (50)

This expression is converted to shock-fixed aixes by use of the relation

tan(g + 90°) = X F (© - ¢ tan(p + 90°) (51)

where
% = tan T0gcos(f + 90°) (52)

The machine-computed surface pressure and th: approximate result are shown
in figure 18. These calculations are slightly inconsistent in that the
machine computation was carried out using 7 = 1.4, whereas the tables,
roference 6, use the value 7y = 1.405.

Systematic Variation of Parameters

A number of cases have been calculated ~ith the stream-function
program, wherein one of the initial parameters was systematically varied
while the others were held fixed. The accuracy of these calculations was
then checked by comparing a few cases with computations performed using
the velocity-entropy program. Each of the t+o programs has presented
difficulties which limit the quantity and quality of obtainable results.
The stream-function program produces accuratz results only where the
increment X6y, 1is small over the whole extrapolation region. This, for
practical reasons, places lower bounds on M, and bl/al and upper bounds
on the angles « and 3. This problem has bezn avcided in the velocity-
entroopy program, but the analysis of the entropy data is very time-
consuming, and so the number of cases that can reasonably be considered
is small. The results presented here agree :2losely by the two computer
programs.

There are many ways in which the initial parameters can be
systematically varied. No attempt is made hzre to do more than sample a
few combinations, however. The cases presented are intended mainly to
illustrate numerical techniques. The parameter combinations that have
been chosen are summarized in tables I to IV, along with the numbers of
the figures where the results are pletted.

AT Y e
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CONCLUDING REMARKS

The inverse method has been applied to the problem of calculating
bodies that support elliptic conical shock waves at finite angles of
incidence. The entropy layer at the surface of such bodlies has been
investigated numerically, also. Two machine computing procedures were
employed, and it is presumed that discrepancies of results are due
primarily to differences involved in the programming of the two procedures.

The application of two stream functions, one of which vanishes on the
body, is a powerful technique in the solution of the three-dimensional
conical flow problem. Future attacks on the problems of more complicated
three-dimensional flows may employ two stream functions with advantage.

The requirement that the shock wave be an elliptic cone makes it
difficult to compare calculations with results of actual tests on conical
bodies. A logical extension of the present work would be to develop
techniques whereby the present assumed shock shapes could be perturbed
so that a body of prescribed shape could be found in a few tries.

The major difficulties that have been encountered in the machine
computations could be overcome to a large extent if the segmenting
processes of the velocity-entropy program and the two-stream-function
formulation of the problem were incorporated into a single computing
program. Thus good accuracy would be assured, even for very thin conical
bodies, and the plotting of final results could be accomplished in a
reasonably short time.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., July 26, 1960
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TABLE I.- MACH NUMBER VARIATION AT FIXED VALUES OF bi/aj
AND WITH &, = 30° AND AT ZERC INCIDENCE

bl/al Mach no. Figure
0.6 10, 20, 100 19
. 5, 10, 20, 100 20
.8 5, 10, 20, 100 21
9 |3, 5, 10, 20, 100 22

TABLE TI.- VARIATION OF bi/a; AT FIXED VALUES OF 6, AND
WITH My = 10 AND AT ZERO INCIDENCE

ggé bi/a1 Figure
10 0.8, 0.9, 1.0| 23
15 0.7, 0.8, 0.9, 1.0 2k
30 | 0.6, 0.7, 0.8, 0.9, 1.0| 25
40 0.8, 0.9, 1.0 26
50 0.8, 0.9, 1.0| 27

TABLE III.- ELLIPTIC CONICAL SHOCK, 6, = 30°, AND
WITH M, = 10, AT FINITE [NCIDENCE

o, B, .
deg deg Figuce
0, 10| 0 28
0 0, 5 29

TABLE IV.- CIRCULAR CONICAL SHOCKS WITI M, = 10 AND WITH
VARTATIONS OF p3 FOR FIXED VALUES OF 64

8o B .

deé deé Figure
10| 0, 2.5 30
1510, 2.5, 5 31
300, 2.5, 5, 10, 20 32
Yoo, 5, 10, 20 33
50|10, 5, 10, 20 34

AN Mty
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Figure 2.- Velocity components in the sphero-conal and Cartesian
coordinate systems.
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//Shock wave

Figure 3.- Cartesian components of the free-stream Mach number.
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Shock Wave —

Streamlines

0|$=90°

Figure 4.~ Streamlines in the conical flow field.
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Load specific values of 8o,
bl/cl, a, B, M(D’ Y AQ, and
n for the case at hand.

Yes

Calculate shock wave data
using equations (25)-(28),
(33)-(36), and (38)-(42).

Are any
values of F(n+l)
negativer

)

!

Compute ¢ -derivatives
numerically. Calculate Pg,
Fog: 698 using equations

(19)-(21).

Compute and print out body
coordinates and pressure
using equations (46-48).

Compute p,, and p. Print
out p, P F, G and S, and
other flow-field data.

\

This case is finished. Go to
START for next case.

Extrapolate 8n-data to
coordinate 8., using equa-
tions (44)-(45).

Figure 5.- Flow chart for the stream-function program.
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Singular pointy
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Entropy at the body-,l //

\‘Doinfs S2
{

1

Bn+2 ‘\

0 <$<90° for elliptic conical shock, a==0
-90< ¢ < 90° for circular conical shock,@=0, 8>0

¢

Figure 6.- The variation of entropy with the coordinate ¢ in the flow
field behind elliptic conical shocks at zero incidence, or circular

shocks at positive angles B.
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1O
_ Shock wave, 8,=30°
— 17 bj/a=0.6, Mp=6
\ Y= |47 a:B:O
9
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8 AN
7
6
\
Zp
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. \ \
\
4 \‘
\
\
0)
)
.2
Body
Stream-function program
| | =——-=Velocity-entropy program
O Stocker's result
0

A 2 3

Figure 8.- Comparison of body shapes for an elliptic conical shock wave
as calculated by the two computer programs and the method of Stocker.
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Figure 9.- Body and surface pressure for a circular conical shock wave

at a finite angle of yaw.
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Figure 10.- The variation of the velocity component u 1in the flow field

behind the shock for the case where 6o = 30°, My = 6, b,/a, = 0.6,
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Figure 11.- The variation of the velocity component v in the flow field
behind the shock for the case where 0o = 30°, Mw = 6, by/ay = 0.6,
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Figure 12.- The variation of the velocity component w in the flow field
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Figure 13.- The variation of entropy in the flow field behind the shock
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Figure 14.- Streamlines in the crossflow between shock and body for the
case where 6o = 30°, My = 6, by/ay = 0.6, ¥ = 1.k, o =8 = 0.
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Figure 15.- Comparison of body shape and surface pressure for an elliptic
conical shock wave as calculated by the velocity-entropy program and
the methods of Stocker and Mauger.
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Figure 16.- Comparisons of calculations with experiments on an elliptic
cone of unit length having semiaxes of liengths 0.104 and 0.208.
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Figure 20.- The effect of Mach number variation on body shape and surface
pressure; bl/a:L = 0.7 series.

0 ow =



Ul oW e

k9

8
7 >
T~ =——-Shock wave, 80=30°%
% bi/a1=0.8, y = .4
— \\\ az B0
6 bl
5 N
Zy
4

XN
3 10o-— ,

\

0 A 2 ) 4 .5 6 7
Yb

{a) Body and shock wave shapes

.32
o S&\
a.28 — <<
5 | Me®5 \
2 L--—210
wn
® 24 N
a ]
8 |
o
L .20
"1

15 30 45 60 75 90
8, deg

O

(b) Surface pressure

Figure 21l.- The effect of Mach number variation on body shape and surface
pressure; bi/a; = 0.8 series.
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Figure 22.- The effect of Mach number variation on body shape and surface
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Figure 26.- The effect of the variation of bl/al on body shape and
surface pressure; 6, = 40° series.
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Figure 28.- The effect of o on body shape and surface pressure; an
elliptic conical shock wave.
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Figure 29.- The effect of B on body shape and surface pressure; an

elliptic conical shock wave.
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on body shape and surface pressure;
circular conical shock with 6o = 15°.
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Figure 34.- The effect of B on body shape and surface pressure;
circular conical shock with 65 = 50°.
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